Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Examination style paper

Exercise A, Question 1

Question:

Use the standard results for $\sum_{r=1}^{n} r$ and for $\sum_{r=1}^{n} r^{2}$ to show that, for all positive integers $n, \sum_{r=1}^{n}(r+1)(3 r+2)=n\left(a n^{2}+b n+c\right)$, where the values of a, b and c should be stated.

Solution:

$$
\begin{aligned}
& \sum_{r=1}^{n}(r+1)(3 r+2)=\sum_{r=1}^{n}\left(3 r^{2}+5 r+2\right) \\
& \quad=3 \sum_{r=1}^{n} r^{2}+5 \sum_{r=1}^{n} r+2 \sum_{r=1}^{n} 1 \\
& =3 \frac{n}{6}(n+1)(2 n+1)+5 \frac{n}{2}(n+1)+2 n \\
& \quad=\frac{n}{2}[(n+1)(2 n+1)+5(n+1)+4] \\
& \quad=\frac{n}{2}\left[2 n^{2}+3 n+1+5 n+5+4\right] \\
& =\frac{n}{2}\left[2 n^{2}+8 n+10\right] \\
& =n\left[n^{2}+4 n+5\right]
\end{aligned}
$$

So $a=1, b=4$ and $c=5$.
Multiply out brackets first

Split into three separate parts to isolate $\sum r^{2}$, $\sum r$ and $\sum 1$

Use standard formulae for $\sum r^{2}, \sum r$ and remember that $\sum_{r=1}^{n} 1=n$.
Take out factor $\frac{n}{2}$
Multiply out the terms in the bracket.
Simplify the bracket.
Take out factor of 2 from bracket which will then be 'cancelled' by the $\frac{1}{2}$ term to give the answer.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Examination style paper

Exercise A, Question 2

Question:

$\mathrm{f}(x)=x^{3}+3 x-6$

The equation $\mathrm{f}(x)=0$ has a root α in the interval $[1,1.5]$.
a Taking 1.25 as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to obtain a second approximation to α. Give your answer to three significant figures.
b Show that the answer which you obtained is an accurate estimate to three significant figures.

Solution:

a

$$
\begin{aligned}
\mathrm{f}(x) & =x^{3}+3 x-6 & \text { Differentiate } \mathrm{f}(x) \text { to give } \mathrm{f}^{\prime}(x) \\
\mathrm{f}^{\prime}(x) & =3 x^{2}+3 &
\end{aligned}
$$

Using the Newton-Raphson procedure with $x_{1}=1.25$

$$
x_{2}=1.25-\frac{\mathrm{f}(1.25)}{\mathrm{f}^{\prime}(1.25)}
$$

State the Newton-Raphson procedure.

$$
\begin{aligned}
& =1.25-\frac{\left[1.25^{3}+3 \times 1.25-6\right]}{\left[3 \times 1.25^{2}+3\right]} \\
& =1.25-\frac{[-0.296875]}{7.6875} \\
& =1.25+.0386 \ldots
\end{aligned}
$$

$$
=1.29(\text { to } 3 \mathrm{sf})
$$

Give your answer to the required accuracy.
b
$\mathrm{f}(1.285)=-0.023 \ldots<0$
$\mathrm{f}(1.295)=0.0567 \ldots>0$

As there is a change of sign and $\mathrm{f}(x)$ is continuous the root α satisfies

Check the sign of $\mathrm{f}(x)$ for the lower and upper bounds of values which round to 1.29 (to 3 sf).

State 'sign change' and draw a conclusion.
$1.285<\alpha<1.295$
$\therefore \alpha=1.29$ (correct to 3 sf).
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Examination style paper

Exercise A, Question 3

Question:

$\mathbf{R}=\left(\begin{array}{cc}-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)$ and $\mathbf{S}=\left(\begin{array}{cc}\sqrt{2} & 0 \\ 0 & \sqrt{2}\end{array}\right)$
a Describe fully the geometric transformation represented by each of \mathbf{R} and \mathbf{S}.
b Calculate RS.

The unit square, U, is transformed by the transformation represented by \mathbf{S} followed by the transformation represented by R.
c Find the area of the image of U after both transformations have taken place.

Solution:

a
\mathbf{R} represents a rotation of 135° anti-clockwise about 0 .
\mathbf{R} takes $\binom{1}{0}$ to $\binom{\frac{-1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$ and $\binom{0}{1}$ to $\binom{\frac{-1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}}$ so is rotation.

S represents an enlargement scale factor $\sqrt{2}$ centre 0
\mathbf{S} is of the form $\left(\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right)$ so is enlargement with scale factor k.
b
$\mathbf{R S}=\left(\begin{array}{cc}-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)\left(\begin{array}{cc}\sqrt{2} & 0 \\ 0 & \sqrt{2}\end{array}\right)=\left(\begin{array}{cc}-1 & -1 \\ 1 & -1\end{array}\right)$
Use the process of matrix multiplication eg $(a b)\binom{c}{d}=a c+b d$.
c

Determinant of $\mathbf{R S}=2$
\therefore Area scale factor of U is 2 .
\therefore Image of U has area 2 .

Recall that the determinant of matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $a d-b c$ and that this represents an area scale factor.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Examination style paper

Exercise A, Question 4

Question:

$\mathrm{f}(z)=z^{4}+3 z^{2}-6 z+10$

Given that $1+\mathrm{i}$ is a complex root of $\mathrm{f}(z)=0$,
a state a second complex root of this equation.
b Use these two roots to find a quadratic factor of $\mathrm{f}(z)$, with real coefficients.
Another quadratic factor of $\mathrm{f}(z)$ is $z^{2}+2 z+5$.
c Find the remaining two roots of $\mathrm{f}(z)=0$.

Solution:

a
$1-\mathrm{i}$ is a second root.
This is the conjugate of $1+i$, and complex roots of polynomial equations with real coefficients occur in conjugate pairs.
b
$[z-(1+\mathrm{i})][z-(1-\mathrm{i})]$ is a quadratic factor.
Multiply the two linear factors to give a quadratic factor.
$\therefore z^{2}-2 z+2$ is the factor.
c

$$
\begin{aligned}
& \text { If } z^{2}+2 z+5=0 \\
& \begin{aligned}
z & =\frac{-2 \pm \sqrt{4-20}}{2} \\
& =-1 \pm \frac{1}{2} \sqrt{16} \mathrm{i} \\
& =-1 \pm 2 \mathrm{i}
\end{aligned}
\end{aligned}
$$

Use the quadratic formula
$z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

Remaining roots are $-1+2 \mathrm{i}$ and $-1-2 \mathrm{i}$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Examination style paper

Exercise A, Question 5

Question:

The rectangular hyperbola H has equation $x y=c^{2}$. The points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$ lie on the hyperbola H.
a Show that the gradient of the chord $P Q$ is $-\frac{1}{p q}$.
The point $R,\left(3 c, \frac{c}{3}\right)$ also lies on H and $P R$ is perpendicular to $Q R$.
b Show that this implies that the gradient of the chord $P Q$ is 9 .

Solution:

a

The gradient of the chord $P Q$ is $\frac{\frac{c}{p}-\frac{c}{q}}{c p-c q}$

$$
\begin{aligned}
& =c \frac{(q-p)}{p q} \div c(p-q) \\
& =c \frac{(q-p)}{p q} \times \frac{1}{c(p-q)} \\
& =-\frac{(p-q)}{p q(p-q)} \\
& =\frac{-1}{p q}
\end{aligned}
$$

b
$P R$ has gradient $\frac{-1}{3 p}$
$Q R$ has gradient $\frac{-1}{3 q}$
These lines are perpendicular
$\therefore \frac{-1}{3 p} \times \frac{-1}{3 q}=-1$
$\therefore \frac{1}{9 p q}=-1$
$\therefore \frac{1}{p q}=-9$
\therefore Gradient of $P Q=\frac{-1}{p q}=9$.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Examination style paper

Exercise A, Question 6

Question:

$\mathbf{M}=\left(\begin{array}{cc}x & 2 x-7 \\ -1 & x+4\end{array}\right)$
a Find the inverse of matrix \mathbf{M}, in terms of x, given that \mathbf{M} is non-singular.
\mathbf{b} Show that \mathbf{M} is a singular matrix for two values of x and state these values.

Solution:

a The determinant of \mathbf{M} is

$$
\begin{aligned}
& x(x+4)-(-1)(2 x-7) \\
& =x^{2}+4 x+2 x-7 \\
& =x^{2}+6 x-7
\end{aligned}
$$

The inverse of \mathbf{M} is
$\frac{1}{x^{2}+6 x-7}\left(\begin{array}{cc}x+4 & 7-2 x \\ 1 & x\end{array}\right)$
b \mathbf{M} is singular when
$x^{2}+6 x-7=0$
ie: $(x+7)(x-1)=0$
$\therefore x=-7$ or 1 .

Use the result that the inverse of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$. to zero.

Then solve the quadratic equation.

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Examination style paper

Exercise A, Question 7

Question:

The complex numbers z and w are given by $z=\frac{7-\mathrm{i}}{1-\mathrm{i}}$, and $w=\mathrm{i} z$.
a Express z and w in the form $a+\mathrm{i} b$, where a and b are real numbers.
b Find the argument of w in radians to two decimal places.
c Show z and w on an Argand diagram
d Find $|z-w|$.

Solution:

a

$$
\begin{aligned}
z=\frac{7-\mathrm{i}}{1-\mathrm{i}} & =\frac{(7-\mathrm{i})(1+\mathrm{i})}{(1-\mathrm{i})(1+\mathrm{i})} \\
& =\frac{8+6 \mathrm{i}}{2} \\
& =4+3 \mathrm{i}
\end{aligned}
$$

$$
\begin{aligned}
w=1 z & =\mathrm{i}(4+3 \mathrm{i}) \\
& =-3+4 \mathrm{i}
\end{aligned}
$$

Multiply numerator and denominator by the conjugate of $1-\mathrm{i}$.

Remember $\mathrm{i}^{2}=-1$
b

$$
\begin{aligned}
\arg w & =\pi-\left(\tan ^{-1} 4 / 3\right) \\
& =2.21
\end{aligned}
$$

As w is in the second quadrant in the Argand diagram.
c

d

$$
\begin{aligned}
z-w & =7-\mathrm{i} \\
|z-w| & =\sqrt{7^{2}+(-1)^{2}} \\
& =\sqrt{50} \\
& =5 \sqrt{2} .
\end{aligned}
$$

© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Examination style paper

Exercise A, Question 8

Question:

The parabola C has equation $y^{2}=16 x$.
a Find the equation of the normal to C at the point $P,(1,4)$.
The normal at P meets the directrix to the parabola at the point Q.
b Find the coordinates of Q.
c Give the coordinates of the point R on the parabola, which is equidistant from Q and from the focus of C.

Solution:

a

$$
\begin{aligned}
y^{2}=16 x \Rightarrow y & =4 x^{\frac{1}{2}} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =4 \times \frac{1}{2} x \frac{-1}{2} \\
& =2 x x^{\frac{-1}{2}}
\end{aligned}
$$

At $(1,4)$ gradient is 2
\therefore Gradient of normal is $\frac{-1}{2}$
The equation of the normal is $y-4=\frac{-1}{2}(x-1)$
ie: $y=\frac{-1}{2} x+4 \frac{1}{2}$
b
The directrix has equation $x=-4$.
Substitute $x=-4$ into normal equation
$\therefore y=6 \frac{1}{2}$
So Q is the point $\left(-4,6 \frac{1}{2}\right)$.
c

$$
\begin{aligned}
\text { At } R y & =6 \frac{1}{2} \\
\therefore\left(6 \frac{1}{2}\right)^{2} & =16 x \\
\therefore x & =\frac{6 \frac{1}{2} \times 6 \frac{1}{2}}{16}=\frac{169}{64}
\end{aligned}
$$

The point R must have the same y coordinate as the point Q.

So R is the point $\left(\frac{169}{64}, \frac{13}{2}\right)$
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Examination style paper

Exercise A, Question 9

Question:

a Use the method of mathematical induction to prove that, for $n \varepsilon \mathbb{Z}^{+}$,
$\sum_{r=1}^{n} r+\left(\frac{1}{2}\right)^{r-1}=\frac{1}{2}\left(n^{2}+n+4\right)-\left(\frac{1}{2}\right)^{n-1}$.
$\mathbf{b} \mathrm{f}(n)=3^{n+2}+(-1)^{n} 2^{n}, n \varepsilon \mathbb{Z}^{+}$.

By considering $2 \mathrm{f}(n+1)-\mathrm{f}(n)$ and using the method of mathematical induction prove that, for $n \varepsilon \mathbb{Z}^{+}, 3^{n+2}+(-1)^{n} 2^{n}$ is divisible by 5 .

Solution:

a Let $n=1$

LHS $=1+\left(\frac{1}{2}\right)^{0}=1+1=2$

$$
\begin{aligned}
R H S & =\frac{1}{2}\left(1^{2}+1+4\right)-\left(\frac{1}{2}\right)^{0} \\
& =\frac{1}{2} \times 6-1=2
\end{aligned}
$$

$\therefore L H S=R H S$ so result is true for $n=1$

Assume that the result is true for $n=k$
ie: $\sum_{r=1}^{k}\left[r+\left(\frac{1}{2}\right)^{r-1}\right]=\frac{1}{2}\left(k^{2}+k+4\right)-\left(\frac{1}{2}\right)^{k-1}$
Add $(k+1)+\left(\frac{1}{2}\right)^{k}$ to each side.

$$
\begin{aligned}
\therefore \sum_{r=1}^{k+1} r+\left(\frac{1}{2}\right)^{r-1} & =\frac{1}{2}\left(k^{2}+k+4\right)+(k+1)-\left(\frac{1}{2}\right)^{k-1}+\left(\frac{1}{2}\right)^{k} \\
& =\frac{1}{2}\left(k^{2}+k+4+2 k+2\right)+\left(\frac{1}{2}\right)^{k-1}\left(-1+\frac{1}{2}\right)^{\text {Collect the similar terms together. }} \\
& =\frac{1}{2}\left(k^{2}+3 k+6\right)-\frac{1}{2}\left(\frac{1}{2}\right)^{k-1} \\
& =\frac{1}{2}\left((k+1)^{2}+(k+1)+4\right)-\left(\frac{1}{2}\right)^{k}
\end{aligned}
$$

ie : $\sum_{r=1}^{n} r+\left(\frac{1}{2}\right)^{r-1}=\frac{1}{2}\left(n^{2}+n+4\right)-\left(\frac{1}{2}\right)^{n-1}$
where $n=k+1$
ie: Result is implied for $n=k+1$.
\therefore By induction, as result is true for $n=1$ then it is implied
Conclude that this implies by for $n=2, n=3$, etc \ldots ie: for all positive integer values for n. induction that the result is true for all positive integers.
b
$\mathrm{f}(n)=3^{n+2}+(-1)^{n} 2^{n} n \varepsilon Z^{+}$
Let $n=1$
$f(1)=3^{3}+(-1)^{1} 2^{1}$
$=27-2$

$$
=25
$$

This is divisible by 5 .
Let $\mathrm{f}(k)$ be divisible by 5
ie: $3^{k+2}+(-1)^{k} 2^{k}=5 A *$
Consider

$$
\begin{aligned}
& 2 \mathrm{f}(k+1)-\mathrm{f}(k)=2 \cdot 3^{k+3}+2(-1)^{k+1} 2^{k+1}-3^{k+2}-(-1)^{k} 2^{k} \\
& \quad=3^{k+2}[2.3-1]+2^{k}(-1)^{k}[-4-1] \\
& \quad=3^{k+2} \times 5-5 \cdot(-1)^{k} 2^{k} \\
& \quad=5\left(3^{k+2}-(-1)^{k} 2^{k}\right) .
\end{aligned}
$$

$\therefore 2 \mathrm{f}(k+1)-\mathrm{f}(k)$ is divisible by 5 .
$=5 B$
$\therefore 2 \mathrm{f}(k+1)=5 B+\mathrm{f}(k)$

$$
=5(B+a)
$$

As $\mathrm{f}(k)$ and $2 \mathrm{f}(k+1)-\mathrm{f}(k)$ are each divisible by 5 , deduce that $\mathrm{f}(k+1)$ is also divisible by 5 .
ie: $2 \mathrm{f}(k+1)$ is divisible by $5 \Rightarrow \mathrm{f}(k+1)$ is divisible by 5 .
So by induction as $\mathrm{f}(1)$ is divisible by 5 then so is $\mathrm{f}(2)$ and so Use induction to complete your proof. is $f(3) \ldots$ and by induction $f(n)$ is divisible by 5 for all positive integers n.

